EDUCATION	University of Maryland, College Park2021Candidate for Ph.D. in Computer Science2021	_
	University of California, Berkeley2017-202B.A. in Computer Science, B.A in MathematicsOverall GPA: 3.86, EE/CS GPA: 3.95	1
PUBLICATIONS	 Memory-efficient Learning for High-Dimensional MRI Reconstruction Ke Wang, Michael Kellman, Christopher M Sandino, Kevin Zhang, Shreyas S. Vasanawala Jonathan I Tamir, Stella X Yu, Michael Lustig https://miccai2021.org/openaccess/paperlinks/2021/09/01/305-Paper2251.html MICCAI 2021 	a,
	[2] Memory-efficient Learning for Large-scale Computational Imaging Michael Kellman, Kevin Zhang, Jon Tamir, Emrah Bostan, Michael Lustig, Laura Waller https://ieeexplore.ieee.org/document/9204455 IEEE Transactions on Computational Imaging, 2020	
TALKS	 [3] 3D Fluorescence Deconvolution with Deep Priors Society of Photographic Instrumentation Engineers (SPIE) West, February 2020 Joint work with Michael Kellman, Emrah Bostan, and Laura Waller. https://doi.org/10.1117/12.2545041 	
	 [4] Memory-Efficient Learning for Unrolled 3D MRI Reconstructions International Society of Magnetic Resonance in Imaging (ISMRM) Workshop on Data Samplin & Image Reconstruction, January 2020 Joint work with Michael Kellman, Jon Tamir, Emrah Bostan, Michael Lustig, and Laura Waller Recording of talk: https://youtu.be/AypmyOlqVK8 	g r.
PREPRINTS	 [5] A Scalable Training Strategy for Blind Multi-Distribution Noise Removal Kevin Zhang, Sakshum Kulshrestha, Christopher A. Metzler https://openreview.net/pdf?id=Jpctg2jSnMA, 2022 	
	[6] MetaDIP: Accelerating Deep Image Prior with Meta Learning Kevin Zhang, Mingyang Xie, Maharshi Gor, Yi-Ting Chen, Yvonne Zhou, Christopher A Metzler https://arxiv.org/abs/2209.08452, 2022	۱.
RESEARCH EXPERIENCE	UMD CP Computational Sensing Lab Graduate Research Assistant Aug 2021	-
	 Working on fusing RGB and imaging sonar data with deep learning. Developed training strategy to train denoisers to denoise noisy images across multiple noise parameters with consistent performance and built optical setup to validate the method or real data [6]. Accelerated fitting Deep Image Prior and related architectures using Model Agnostic Meta Learning to solve inverse problems like denoising quickly without training data. [5] Coadvisors: Professor Christopher Metzler, Professor Jiabin Huang 	se n 1-
	Berkeley Computational Imaging Lab	
	Research Assistant Aug 2018 - May 202	0
	• Utilized invertibility of deep neural networks to enable memory-efficient deep learning for large-scale computational imaging problems. [1,2,4]	r

- Implemented 3D convolutional neural networks using PyTorch to deconvolve + denoise 3D MRI images. [1,2,4]
- Applied convolutional neural network as a deep image prior for the task of 3D flourescence deconvolution. [3]
- Advisor: Professor Laura Waller

chine Learning

TEACHING EXPERIENCE	Discrete Mathematics and ProbabilityTheory (CS 70)Teaching AssistantJan - May 2020, Sep - Dec 2019	€,
	Jan - May 201 Taught weekly discussion sections, held office hours, developed course content, maintained cours website, and helped facilitate online lectures.	9 e
	Grader Jun - Aug 201 Graded students' weekly homeworks.	8
WORK EXPERIENCE	Google Software Engineering Intern Jun - Aug 201	9
	 Added experimental AR features for helping drivers and riders find each other to Google' ridesharing SDK's test app built using Android framework (ARCore, Java, XML). Built a microservice to facilitate communication about current position between driver test app and rider test app using Python (Flask) and Google Cloud Platform. 	st
PROJECTS	Ear Training App Full-stack Web App July 2019 - Presen	ıt
	 Hosted at https://ear.kevinwzhang.com Developed quiz application in HTML/CSS and JavaScript to test functional knowledge of chords and harmony. Utilized machine-learning based pitch detection algorithm from ml5.js to create a musica harmony quiz which the user must complete through singing. Wrote backend using Firebase that allows users to save customized chords.)f 1
	CS 170 (Algorithms) Final Project Approximation Algorithm Oct - Nov 201	8
	 Created an algorithm to approximate the solution to an NP-hard problem detailed here https://bit.ly/33S12Xq. Implemented and parallelized the algorithm using Python and Co. 	9:
	 Approach taken combined algorithmic techniques like integer linear programming, hill climbing, simulated annealing, and backtracking/caching. Achieved 2nd place out of 306 teams.)-
TECHNICAL SKILLS	Languages: Python (PyTorch, NumPy, SciPy, Matplotlib, OpenCV-python), Java, Bash	
	Other technologies: Unix, Git, Jupyter Notebook, Vim	
	Graduate Coursework : Information Theory, Linear Systems, Low-dimensional Models of High dimensional Data, Real Analysis	1-
	Undergraduate Coursework : Data Structures, Algorithms, Probability Theory and Randon Processes, Optimization, Real Analysis, Abstract Algebra, Linear Algebra, Complex Analysis, Ma	n 1-