
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Smoke Simulation on the Surface of 3-D Manifolds

ALEX KASSIL, UC Berkeley, USA

CATHERINE CANG, UC Berkeley, USA

CHARLES SUN, UC Berkeley, USA

KEVIN ZHANG, UC Berkeley, USA

Traditional smoke simulators model smoke on a 2D plane. We explore extending the 2D definition to simulate smoke on the surface of
various 3D manifolds, such as a torus, sphere, and more. Our simulator uses the Navier-Stokes equations along with space wrapping
and point mapping to generate smoke with low distortions on each manifold. We are able to simulate at real-time by parallelizing our
implementation onto several fragment shaders on the GPU.

Additional Key Words and Phrases: manifolds, donuts, smoke simulation

ACM Reference Format:
Alex Kassil, Catherine Cang, Charles Sun, and Kevin Zhang. 2021. Smoke Simulation on the Surface of 3-D Manifolds. 1, 1 (May 2021),
5 pages. https://doi.org/

1 INTRODUCTION

Traditional smoke simulators model smoke on a 2D plane. We explore simulating smoke on the surface of various
3D manifolds, such as a torus, sphere, and more. Some applications are making games, creating animated assets, and
visualizing how exotic geometries affect smoke. To do this, we extended the GPU-accelerated 2D smoke simulation from
[3] to 3D while also constraining calculations to the surface of various manifolds. We use Three.js for our code, allowing
for us to interact with the simulator and change several parameters such as the manifold, dissipation, buoyancy, and
smoke radius

2 TECHNICAL APPROACH

2.1 Manifolds

We will model smoke on two types of manifolds: spherical and parametric surfaces. For a spherical surface, each point
on our surface in 3D corresponds to a unique 3D direction vector, so there is an injective mapping 𝑓 : S3 → R3, where
𝑆3 is the 3-sphere. For example for a unit sphere, 𝑓 (𝑥) = 𝑥 . For a parametric surface, each point on our surface in 3D
corresponds to a unique point (𝑢, 𝑣) ∈ [0, 1] × [0, 1], so there exists an injective mapping 𝑓 : [0, 1] × [0, 1] → R3. For
example, for a torus, 𝑓 (𝑢, 𝑣) = (𝑟 sin(𝑣), (𝑅 + 𝑟 cos(𝑣)) cos(𝑢), (𝑅 + 𝑟 cos(𝑣)) sin(𝑢)).

For all of our surfaces, we assume that given a point on the surface we can calculate the normal vector n, and that
we can calculate a unique inverse mapping as well.

Authors’ addresses: Alex Kassil, alexkassil@berkeley.edu, webmaster@marysville-ohio.com, UC Berkeley, USA; Catherine Cang, catherinecang@berkeley.
edu, UC Berkeley, USA; Charles Sun, charlesjsun@berkeley.edu, UC Berkeley, USA; Kevin Zhang, kevinzhang1@berkeley.edu, UC Berkeley, USA.

© 2021

1

https://doi.org/

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Kassil, Cang, Sun, and Zhang

2.2 Navier-Stokes Equations

We model our smoke simulation using the Navier-Stokes equations for incompressible fluids, and additionally assume
that our fluid (i.e. air) has viscosity of zero and density of one. The Navier-Stokes equations with these assumptions are

𝜕u
𝜕𝑡

= −(u · ∇)u − ∇𝑝 + F ∇ · u = 0, (1)

where the fluid is represented by a velocity vector field u(x, 𝑡) and pressure scalar field 𝑝 (x, 𝑡), x is position, 𝑡 is time.
We also keep track of another vector field q(x, 𝑡) that contains the RGB color of the smoke for visualization.

We will use numerical techniques to simulate the flow with a time stepsize of 𝛿𝑡 . We follow the method described in
[3] and [4], and below we will explain how we generalized each step in the simulation to 3D manifolds.

2.3 Vector Calculations

The vector fields above are only defined for points on the 3D surface. This means that whenever we try to sample from
a field 𝑞(x, 𝑡), we implicitly assume that we first project the point x onto the surface (i.e. orthogonal projection), and
then sample. Additionally, velocity vectors must be tangent to the surface, so we also define the tangentize function as
𝑇 (v, n) = v − (v · n)n, i.e. the vector rejection of v onto the unit-length normal vector n. We will also denote nx as the
unit-length normal vector at point x

We also use the finite difference form of the gradient, divergence, Laplacian, and curl operators on the fields, with a
finite-difference of 𝛿𝑥 in all three dimensions [3].

2.4 Advection

Advection is the process by which a fluid’s velocity field transports quantities around. Typically, it is enough to use the
following update equation

q(x, 𝑡 + 𝛿𝑡) = q(x − u(x, 𝑡)𝛿𝑡, 𝑡), (2)

to advect smoke colors. However, for velocity, we need to rotate the velocity vector at x′ so that it is tangent to the
surface at 𝑥 . We can achieve this with the Rodrigues’ rotation formula such that

x′ = x − u(x, 𝑡)𝛿𝑡, u′ = u(x′, 𝑡) (3)

u(x, 𝑡 + 𝛿𝑡) = (nx · nx′)u′ − (u′ · nx)nx′ +
(nx × nx′) ((nx × nx′) · u′)

1 + nx · nx′
(4)

2.5 External Force and Smoke Application

After advection, we apply external velocity and smoke color that’s added by the user clicking and dragging with their
mouse. At every timestep, the user’s mouse position xm and velocity vm in object space is calculated, and is added to
the q and u field with a Gaussian kernel with radius 𝑟 ,

q(x, 𝑡 + 𝛿𝑡) = q(x, 𝑡) + c exp(x · xm/𝑟), u(x, 𝑡 + 𝛿𝑡) = 𝑇 (u(x, 𝑡) + vm exp(x · xm/𝑟), nx) (5)

2.6 Vorticity Confinement

Vorticity confinement adds back in small details like swirls are dampened out by numerical simulation [2]. This requires
calculating the vorticity, which is defined using the curl operator ∇ × u, and is orthogonal to the velocity field. After
calculating curl, we will project it onto the normal vector, calculate the normalized vorticity location vector, and then

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Smoke Simulation on the Surface of 3-D Manifolds 3

tangentize it.

𝜔 (x, 𝑡) = ((∇ × u) · nx)nx, 𝜂 (x, 𝑡) = 𝑇 (∇||𝜔 | |, nx), N =
𝜂

| |𝜂 | | (6)

Finally we can apply a force in the orthogonal direction to simulate small currents with a weight parameter 𝜖 ≥ 0.

fc = 𝜖𝛿𝑥 (N × 𝜔), u(x, 𝑡 + 𝛿𝑡) = 𝑇 (u(x, 𝑡) + fc (x, 𝑡)𝛿𝑡, nx), (7)

2.7 Projection

The final projection step (not to be confused with vector orthogonal projection) involves the Jacobi iterations algorithm,
which is the same as [3], with an added dimension, and gradient subtraction has the added constraint that we use
surface gradient instead (which is the gradient projected to tangent plane),

u(x, 𝑡 + 𝛿𝑡) = u(x, 𝑡) −𝑇 (∇𝑝, nx) (8)

2.8 Shader Implementations

The vector and scalar fields are all stored as textures, which allows operations to be done in parallel on the GPU. For
parametric surfaces, the fields are stored in 2D textures, meaning the shader first take in the uv coordinates, then
transform it using 𝑓 to x to perform calculations. Then, when it needs to sample from the vector field at x, it transforms
x using the inverse transform 𝑓 −1, and samples the texture. For spherical surfaces, the fields are stored in cubemap
textures, because cubemaps are sampled with a direction vector in S3, which exactly corresponds the input to our
spherical surface mapping function.

As an example, for smoke simulation on a unit sphere, the manifold function 𝑓 directly maps a normalized direction
vector x to itself. The normal vector nx is again easy to calculate as nx = x. This allows simulations to be done in
parallel on the GPU, and minimizes distortions since there is not planer mapping from a plane to a sphere.

3 FUTURE DIRECTIONS

We did not have time to simulate smoke on other manifolds besides the sphere in a distortion-free way. To generalize to
other manifolds, we start by computing the normal vector. For a parametric function 𝑓 (𝑢, 𝑣), this will be (𝜕𝑓 /𝜕𝑢) ×
(𝜕𝑓 /𝜕𝑣)/| | (𝜕𝑓 /𝜕𝑢) × (𝜕𝑓 /𝜕𝑣) | |. To properly sample the fields stored in 2D textures when performing finite difference
methods, the finite differences need to be properly mapped from 3D to 2D space based on the distortions the parametric
function introduces. The local distortions are well-modeled by the Jacobian of 𝑓 −1 when going from the surface to
the 2D texture. To compute the Jacobian of 𝑓 −1, it is possible to directly invert 𝑓 and compute the Jacobian, but this is
often intractable analytically depending on the form of 𝑓 . Instead, we can use the implicit function theorem to compute
𝐽𝑓 −1 = 𝐽

†
𝑓
, where † represents the pseudoinverse, and map a 3D finite difference 𝛿𝑥 into 2D as 𝐽 †

𝑓
𝛿𝑥 .

4 RESULTS

We implemented our simulator using the JavaScript library Three.JS [1], which gives us access to WebGL for our
shader code. We properly implemented smoke simulation on a spherical surfaces on a unit sphere and cube. We also
implemented parametric surfaces like torus, but didn’t completely remove distortion from Mobius strip and Klein bottle.
Below we will show different aspects of the simulator. You can also find the demo at https://charlesjsun.github.io/cs184-
smoke-simulator/index.html. Click and drag on the surface to draw smoke, and click and drag not on the surface to
rotate the camera.

https://charlesjsun.github.io/cs184-smoke-simulator/index.html
https://charlesjsun.github.io/cs184-smoke-simulator/index.html

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Kassil, Cang, Sun, and Zhang

(a) Plane wrap and buoyancy with
constant source at center and
buoyancy angle of 150 degrees

(b) Plane wrap highlighting vortic-
ity. Same conditions as previous
with vorticity turned on

(c) Torus no wrap. Notice how
there is a discontinuity where the
four corners of the texture inter-
sect

(d) Torus wrap with buoyancy al-
lows for continuous smoke dissi-
pation in all directions. The clock-
wise swirl is generated from a con-
stant smoke source and a buoy-
ancy angle of 90 degrees.

(e) When trying to map a 2D tex-
ture onto the sphere, there is dis-
tortion near the pole.

(f) When using cubemap textures,
there is no position-dependent
distortion, as would be expected
of the highly symmetric sphere.

(g) Mobius Strip. There are some
wrapping issues due to the nonori-
entability of this surface.

(h) Klein Bottle. The smoke can
flow around the whole surface
of the Klein bottle, but there
are no interactions at the self-
intersection.

(i) Cube, using spherical surface
mapping

Fig. 1. Smoke on Manifolds

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Smoke Simulation on the Surface of 3-D Manifolds 5

5 PROBLEMS ENCOUNTERED

We ran into several minor bugs at each stage of our implementation – in implementing the original Navier-Stokes
equations, implementing the interactive GUI, and implementing mapping onto the manifolds. In implementing the
Navier-Stokes equations, ran into several minor bugs mostly relating to passing in the incorrect variables into parts of
the equation. We were able to fix these by more carefully comparing to the original equations and organizing our code.
For the GUI, we ran into some problems with user input, such as the mouse clicks adding in smoke when we clicked
outside of the manifold. These were fairly easy to debug as we could interact with the GUI and use the JavaScript
console.

6 LESSONS LEARNED

JavaScript was a somewhat unfamiliar language for all of us, so we learned how to navigate writing codebases in
JavaScript. This was also a good opportunity to see how shader code can integrate with different languages, since we
did get practice in previous projects with writing shader code integrated with C++, but through this project we could
integrate it with JavaScript using WebGL. We also learned that how to divide work into parallelizable modules, even in
the project where a lot of parts were interconnected.

7 CONTRIBUTIONS

Charles came up with and implemented all the equations for accurate low-distortion sphere, camera rotation, and
setup the framework for the codebase (including all of the base fluid simulation equation). Catherine implemented
the 2D equations for vorticity, curl, buoyancy, and external temperature input. Kevin implemented many manifolds
including the naive sphere (with distortion), Mobius Strip, Klein Bottle, and did part of the math required to generalize to
non-sphere manifolds without distortion. Alex implemented the GUI (including user input control of several parameters),
and the website which hosts our demo along with our project deliverables.

REFERENCES
[1] [n.d.]. Three.js JavaScript 3D Library. https://github.com/mrdoob/three.js/. Accessed: 2021-05-11.
[2] Ronald Fedkiw, Jos Stam, andHenrikWann Jensen. 2001. Visual Simulation of Smoke. In Proceedings of the 28th Annual Conference on Computer Graphics

and Interactive Techniques (SIGGRAPH ’01). Association for Computing Machinery, New York, NY, USA, 15–22. https://doi.org/10.1145/383259.383260
[3] Mark J. Harris. 2004. Fast Fluid Dynamics Simulation on the GPU. In GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics.

Addison-Wesley Professional.
[4] Kenneth Tsai Rachel Bhadra, Jonathan Ngan. [n.d.]. Smoke Simulator. Accessed: 2021-05-11.

https://github.com/mrdoob/three.js/
https://doi.org/10.1145/383259.383260

	Abstract
	1 Introduction
	2 Technical Approach
	2.1 Manifolds
	2.2 Navier-Stokes Equations
	2.3 Vector Calculations
	2.4 Advection
	2.5 External Force and Smoke Application
	2.6 Vorticity Confinement
	2.7 Projection
	2.8 Shader Implementations

	3 Future Directions
	4 Results
	5 Problems Encountered
	6 Lessons Learned
	7 Contributions
	References

